A Novel Adaptive Fuzzy Inference System for Mobile Robot Navigation
نویسندگان
چکیده
The Fuzzy hybridization technique for intelligent systems have become of research interests in a variety of research areas over the past decade. There are limitations faced by all popular fuzzy systems architectures when they are applied to applications with a large number of inputs (more than three). The present paper proposes a novel adaptive fuzzy inference system for multi-sensors mobile robot navigation. A novel fuzzy inference system is constructed by the automatic generation of membership functions (MFs) and formed a minimal numbers of rules using hybrid fuzzy clustering algorithm (Combination of Fuzzy C-means and Subtractive clustering algorithm) and the modified apriori algorithm, respectively. A modified apriori algorithm is utilized to count the number of common elements from the clusters and to obtain a minimal set of decision rules based on input-output datasets. The generated modified adaptive fuzzy inference system is then adjusted by the least square method and the gradient descent algorithm towards better performance with a minimal set of rules. The proposed algorithm is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance is compared with other existing approaches in an application of mobile robot navigation and shown to be very competitive and improved results.
منابع مشابه
Optimizing the Torque of Knee Movements of a Rehabilitation Robot
The aim of this study is to employ the novel Adaptive Network-based Fuzzy Inference System to optimize the torque applied on the knee link of a rehabilitation robot. Given the special conditions of stroke or spinal cord injury patients, devices with minimum error are required for performing the rehabilitation exercises. After examining the anthropometric data tables of human body, parameters su...
متن کاملMobile Robot Navigation and Obstacle-avoidance using ANFIS in Unknown Environment
Navigation and obstacle avoidance in an unknown environment is proposed in this paper using hybrid neural network with fuzzy logic controller. The overall system is termed as Adaptive Neuro Fuzzy Inference System (ANFIS). ANFIS combines the benefits of fuzzy logic and neural networks for the purpose of achieving robotic navigation task. Simulation results are presented using Khepera Simulator (...
متن کاملAdaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy
This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...
متن کاملA New Intelligent Motion Planning for Mobile Robot Navigation using Multiple Adaptive Neuro-Fuzzy Inference System
Nowadays intelligent tools such as fuzzy inference system (FIS), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are mainly considered as effective and suitable methods for modeling an engineering system. This paper presents a new hybrid technique based on the combination of fuzzy inference system and artificial neural network for addressing navigational proble...
متن کاملIntelligent Adaptive Mobile Robot Navigation
This paper deals with the application of a neuro-fuzzy inference system to a mobile robot navigation in an unknown, or partially unknown environment. The final aim of the robot is to reach some pre-defined goal. For this purpose, a sort of a co-operation between three main sub-modules is performed. These sub-modules consist in three elementary robot tasks: following a wall, avoiding an obstacle...
متن کامل